A Knowledge Graph Embeddings based Approach for Author Name Disambiguation using Literals

Scholarly data is growing continuously containing information about the articles from a plethora of venues including conferences, journals, etc. Many initiatives have been taken to make scholarly data available as Knowledge Graphs (KGs). These efforts to standardize these data and make them accessib...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Santini, Cristian, Genet Asefa Gesese, Peroni, Silvio, Gangemi, Aldo, Sack, Harald, Alam, Mehwish
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Scholarly data is growing continuously containing information about the articles from a plethora of venues including conferences, journals, etc. Many initiatives have been taken to make scholarly data available as Knowledge Graphs (KGs). These efforts to standardize these data and make them accessible have also led to many challenges such as exploration of scholarly articles, ambiguous authors, etc. This study more specifically targets the problem of Author Name Disambiguation (AND) on Scholarly KGs and presents a novel framework, Literally Author Name Disambiguation (LAND), which utilizes Knowledge Graph Embeddings (KGEs) using multimodal literal information generated from these KGs. This framework is based on three components: 1) Multimodal KGEs, 2) A blocking procedure, and finally, 3) Hierarchical Agglomerative Clustering. Extensive experiments have been conducted on two newly created KGs: (i) KG containing information from Scientometrics Journal from 1978 onwards (OC-782K), and (ii) a KG extracted from a well-known benchmark for AND provided by AMiner (AMiner-534K). The results show that our proposed architecture outperforms our baselines of 8-14% in terms of the F1 score and shows competitive performances on a challenging benchmark such as AMiner. The code and the datasets are publicly available through Github: https://github.com/sntcristian/and-kge and Zenodo:https://doi.org/10.5281/zenodo.6309855 respectively.
ISSN:2331-8422