Steering Control for Haptic Feedback and Active Safety Functions

Steering feedback is an important element that defines driver–vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator's control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawback...

Full description

Saved in:
Bibliographic Details
Main Author Chugh, Tushar
Format Dissertation
LanguageEnglish
Published ProQuest Dissertations & Theses 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Steering feedback is an important element that defines driver–vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator's control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawbacks are hardware dependent steering feedback response and attenuated driver–environment transparency. This thesis investigates a closed-loop control method for electric power assisted steering and steer-by-wire systems. The advantages of this method, compared to open loop, are better hardware impedance compensation, system independent response, explicit transparency control and direct interface to active safety functions.The closed-loop architecture, outlined in this thesis, includes a reference model, a feedback controller and a disturbance observer. The feedback controller forms the inner loop and it ensures: reference tracking, hardware impedance compensation and robustness against the coupling uncertainties. Two different causalities are studied: torque and position control. The two are objectively compared from the perspective of (uncoupled and coupled) stability, tracking performance, robustness, and transparency.The reference model forms the outer loop and defines a torque or position reference variable, depending on the causality. Different haptic feedback functions are implemented to control the following parameters: inertia, damping, Coulomb friction and transparency. Transparency control in this application is particularly novel, which is sequentially achieved. For non-transparent steering feedback, an environment model is developed such that the reference variable is a function of virtual dynamics. Consequently, the driver–steering interaction is independent from the actual environment. Whereas, for the driver–environment transparency, the environment interaction is estimated using an observer; and then the estimated signal is fed back to the reference model. Furthermore, an optimization-based transparency algorithm is proposed. This renders the closed-loop system transparent in case of environmental uncertainty, even if the initial condition is non-transparent.The steering related active safety functions can be directly realized using the closed-loop steering feedback controller. This implies, but is not limited to, an angle overlay from the vehicle motion control functions and a torque overlay from the haptic support functions.Experimental results and theoretical findings presented in the thesis are corroborated, including the real-time implementation of torque and position control strategies. In general, it can be concluded that position control lacks performance and robustness due to high and/or varying system inertia. Although the problem is somewhat mitigated by a robust H∞ position controller, the high frequency haptic performance remains compromised. Whereas, the required objectives are simultaneously achieved using a torque controller.
ISBN:9798762121200