MaIL: A Unified Mask-Image-Language Trimodal Network for Referring Image Segmentation

Referring image segmentation is a typical multi-modal task, which aims at generating a binary mask for referent described in given language expressions. Prior arts adopt a bimodal solution, taking images and languages as two modalities within an encoder-fusion-decoder pipeline. However, this pipelin...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Li, Zizhang, Wang, Mengmeng, Jianbiao Mei, Liu, Yong
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 25.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Referring image segmentation is a typical multi-modal task, which aims at generating a binary mask for referent described in given language expressions. Prior arts adopt a bimodal solution, taking images and languages as two modalities within an encoder-fusion-decoder pipeline. However, this pipeline is sub-optimal for the target task for two reasons. First, they only fuse high-level features produced by uni-modal encoders separately, which hinders sufficient cross-modal learning. Second, the uni-modal encoders are pre-trained independently, which brings inconsistency between pre-trained uni-modal tasks and the target multi-modal task. Besides, this pipeline often ignores or makes little use of intuitively beneficial instance-level features. To relieve these problems, we propose MaIL, which is a more concise encoder-decoder pipeline with a Mask-Image-Language trimodal encoder. Specifically, MaIL unifies uni-modal feature extractors and their fusion model into a deep modality interaction encoder, facilitating sufficient feature interaction across different modalities. Meanwhile, MaIL directly avoids the second limitation since no uni-modal encoders are needed anymore. Moreover, for the first time, we propose to introduce instance masks as an additional modality, which explicitly intensifies instance-level features and promotes finer segmentation results. The proposed MaIL set a new state-of-the-art on all frequently-used referring image segmentation datasets, including RefCOCO, RefCOCO+, and G-Ref, with significant gains, 3%-10% against previous best methods. Code will be released soon.
ISSN:2331-8422