Propagation of minimality in the supercooled Stefan problem

Supercooled Stefan problems describe the evolution of the boundary between the solid and liquid phases of a substance, where the liquid is assumed to be cooled below its freezing point. Following the methodology of Delarue, Nadtochiy and Shkolnikov, we construct solutions to the one-phase one-dimens...

Full description

Saved in:
Bibliographic Details
Published inIDEAS Working Paper Series from RePEc
Main Authors Cuchiero, Christa, Rigger, Stefan, Svaluto-Ferro, Sara
Format Paper
LanguageEnglish
Published St. Louis Federal Reserve Bank of St. Louis 01.01.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Supercooled Stefan problems describe the evolution of the boundary between the solid and liquid phases of a substance, where the liquid is assumed to be cooled below its freezing point. Following the methodology of Delarue, Nadtochiy and Shkolnikov, we construct solutions to the one-phase one-dimensional supercooled Stefan problem through a certain McKean-Vlasov equation, which allows to define global solutions even in the presence of blow-ups. Solutions to the McKean-Vlasov equation arise as mean-field limits of particle systems interacting through hitting times, which is important for systemic risk modeling. Our main contributions are: (i) we prove a general tightness theorem for the Skorokhod M1-topology which applies to processes that can be decomposed into a continuous and a monotone part. (ii) We prove propagation of chaos for a perturbed version of the particle system for general initial conditions. (iii) We prove a conjecture of Delarue, Nadtochiy and Shkolnikov, relating the solution concepts of so-called minimal and physical solutions, showing that minimal solutions of the McKean-Vlasov equation are physical whenever the initial condition is integrable.