Counting zeros of the Riemann zeta function
In this article, we show that $$ \left| N (T) - \frac{T}{ 2 \pi} \log \left( \frac{T}{2\pi e}\right) \right| \le 0.1038 \log T + 0.2573 \log\log T + 9.3675 $$ where \(N(T)\) denotes the number of non-trivial zeros \(\rho\), with \(0<\Im(\rho) \le T\), of the Riemann zeta function. This improves t...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
14.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, we show that $$ \left| N (T) - \frac{T}{ 2 \pi} \log \left( \frac{T}{2\pi e}\right) \right| \le 0.1038 \log T + 0.2573 \log\log T + 9.3675 $$ where \(N(T)\) denotes the number of non-trivial zeros \(\rho\), with \(0<\Im(\rho) \le T\), of the Riemann zeta function. This improves the previous result of Trudgian for sufficiently large \(T\). The improvement comes from the use of various subconvexity bounds and ideas from the work of Bennett \(et\) \(al.\) on counting zeros of Dirichlet \(L\)-functions. |
---|---|
ISSN: | 2331-8422 |