Delving Deep into the Generalization of Vision Transformers under Distribution Shifts
Vision Transformers (ViTs) have achieved impressive performance on various vision tasks, yet their generalization under distribution shifts (DS) is rarely understood. In this work, we comprehensively study the out-of-distribution (OOD) generalization of ViTs. For systematic investigation, we first p...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
08.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Vision Transformers (ViTs) have achieved impressive performance on various vision tasks, yet their generalization under distribution shifts (DS) is rarely understood. In this work, we comprehensively study the out-of-distribution (OOD) generalization of ViTs. For systematic investigation, we first present a taxonomy of DS. We then perform extensive evaluations of ViT variants under different DS and compare their generalization with Convolutional Neural Network (CNN) models. Important observations are obtained: 1) ViTs learn weaker biases on backgrounds and textures, while they are equipped with stronger inductive biases towards shapes and structures, which is more consistent with human cognitive traits. Therefore, ViTs generalize better than CNNs under DS. With the same or less amount of parameters, ViTs are ahead of corresponding CNNs by more than 5% in top-1 accuracy under most types of DS. 2) As the model scale increases, ViTs strengthen these biases and thus gradually narrow the in-distribution and OOD performance gap. To further improve the generalization of ViTs, we design the Generalization-Enhanced ViTs (GE-ViTs) from the perspectives of adversarial learning, information theory, and self-supervised learning. By comprehensively investigating these GE-ViTs and comparing with their corresponding CNN models, we observe: 1) For the enhanced model, larger ViTs still benefit more for the OOD generalization. 2) GE-ViTs are more sensitive to the hyper-parameters than their corresponding CNN models. We design a smoother learning strategy to achieve a stable training process and obtain performance improvements on OOD data by 4% from vanilla ViTs. We hope our comprehensive study could shed light on the design of more generalizable learning architectures. |
---|---|
ISSN: | 2331-8422 |