Optimal scaling of random-walk Metropolis algorithms using Bayesian large-sample asymptotics
High-dimensional limit theorems have been shown useful to derive tuning rules for finding the optimal scaling in random-walk Metropolis algorithms. The assumptions under which weak convergence results are proved are however restrictive: the target density is typically assumed to be of a product form...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-dimensional limit theorems have been shown useful to derive tuning rules for finding the optimal scaling in random-walk Metropolis algorithms. The assumptions under which weak convergence results are proved are however restrictive: the target density is typically assumed to be of a product form. Users may thus doubt the validity of such tuning rules in practical applications. In this paper, we shed some light on optimal-scaling problems from a different perspective, namely a large-sample one. This allows to prove weak convergence results under realistic assumptions and to propose novel parameter-dimension-dependent tuning guidelines. The proposed guidelines are consistent with previous ones when the target density is close to having a product form, and the results highlight that the correlation structure has to be accounted for to avoid performance deterioration if that is not the case, while justifying the use of a natural (asymptotically exact) approximation to the correlation matrix that can be employed for the very first algorithm run. |
---|---|
ISSN: | 2331-8422 |