Peptipedia: a comprehensive database for peptide research supported by Assembled predictive models and Data Mining approaches
Motivation: Peptides have attracted the attention in this century due to their remarkable therapeutic properties. Computational tools are being developed to take advantage of existing information, encapsulating knowledge and making it available in a simple way for general public use. However, these...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
28.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Motivation: Peptides have attracted the attention in this century due to their remarkable therapeutic properties. Computational tools are being developed to take advantage of existing information, encapsulating knowledge and making it available in a simple way for general public use. However, these are property-specific redundant data systems, and usually do not display the data in a clear way. In some cases, information download is not even possible. This data needs to be available in a simple form for drug design and other biotechnological applications. Results: We developed Peptipedia, a user-friendly database and web application to search, characterise and analyse peptide sequences. Our tool integrates the information from thirty previously reported databases, making it the largest repository of peptides with recorded activities so far. Besides, we implemented a variety of services to increase our tool's usability. The significant differences of our tools with other existing alternatives becomes a substantial contribution to develop biotechnological and bioengineering applications for peptides. Availability: Peptipedia is available for non-commercial use as an open-access software, licensed under the GNU General Public License, version GPL 3.0. The web platform is publicly available at pesb2.cl/peptipedia. Both the source code and sample datasets are available in the GitHub repository https://github.com/CristoferQ/PeptideDatabase. Contact: david.medina@cebib.cl, ana.sanchez@ing.uchile.cl |
---|---|
ISSN: | 2331-8422 |