Discrete fractional integrals, lattice points on short arcs, and diophantine approximation
Recently in joint work with E. Sert, we proved sharp boundedness results on discrete fractional integral operators along binary quadratic forms. Present work vastly enhances the scope of those results by extending boundedness to bivariate quadratic polynomials. We achieve this in part by establishin...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
19.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
Cover
Loading…
Summary: | Recently in joint work with E. Sert, we proved sharp boundedness results on discrete fractional integral operators along binary quadratic forms. Present work vastly enhances the scope of those results by extending boundedness to bivariate quadratic polynomials. We achieve this in part by establishing connections to problems on concentration of lattice points on short arcs of conics, whence we study discrete fractional integrals and lattice point concentration from a unified perspective via tools of sieving and diophantine approximation, and prove theorems that are of interest to researchers in both subjects. |
---|---|
Bibliography: | content type line 50 SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 |
ISSN: | 2331-8422 |