Random Coordinate Langevin Monte Carlo

Langevin Monte Carlo (LMC) is a popular Markov chain Monte Carlo sampling method. One drawback is that it requires the computation of the full gradient at each iteration, an expensive operation if the dimension of the problem is high. We propose a new sampling method: Random Coordinate LMC (RC-LMC)....

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ding, Zhiyan, Li, Qin, Lu, Jianfeng, Wright, Stephen J
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 03.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Langevin Monte Carlo (LMC) is a popular Markov chain Monte Carlo sampling method. One drawback is that it requires the computation of the full gradient at each iteration, an expensive operation if the dimension of the problem is high. We propose a new sampling method: Random Coordinate LMC (RC-LMC). At each iteration, a single coordinate is randomly selected to be updated by a multiple of the partial derivative along this direction plus noise, and all other coordinates remain untouched. We investigate the total complexity of RC-LMC and compare it with the classical LMC for log-concave probability distributions. When the gradient of the log-density is Lipschitz, RC-LMC is less expensive than the classical LMC if the log-density is highly skewed for high dimensional problems, and when both the gradient and the Hessian of the log-density are Lipschitz, RC-LMC is always cheaper than the classical LMC, by a factor proportional to the square root of the problem dimension. In the latter case, our estimate of complexity is sharp with respect to the dimension.
ISSN:2331-8422