Radiative control of localized excitons at room temperature with an ultracompact tip-enhanced plasmonic nano-cavity

In atomically thin semiconductors, localized exciton (X\(_L\)) coupled to light shows single quantum emitting behaviors through radiative relaxation processes providing a new class of optical sources for potential applications in quantum communication. In most studies, however, X\(_L\) photoluminesc...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Lee, Hyeongwoo, Kim, Inki, Park, Chulho, Kang, Mingu, Mun, Jungho, Kim, Yeseul, Raschke, Markus B, Jeong, Mun Seok, Rho, Junsuk, Kyoung-Duck Park
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 14.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In atomically thin semiconductors, localized exciton (X\(_L\)) coupled to light shows single quantum emitting behaviors through radiative relaxation processes providing a new class of optical sources for potential applications in quantum communication. In most studies, however, X\(_L\) photoluminescence (PL) from crystal defects has mainly been observed in cryogenic conditions because of their sub-wavelength emission region and low quantum yield at room temperature. Furthermore, engineering the radiative relaxation properties, e.g., emission region, intensity, and energy, remained challenging. Here, we present a plasmonic antenna with a triple-sharp-tips geometry to induce and control the X\(_L\) emission of a WSe\(_2\) monolayer (ML) at room temperature. By placing a ML crystal on the two sharp Au tips in a bowtie antenna fabricated through cascade domino lithography with a radius of curvature of <1 nm, we effectively induce tensile strain in the nanoscale region to create robust X\(_L\) states. An Au tip with tip-enhanced photoluminescence (TEPL) spectroscopy is then added to the strained region to probe and control the X\(_L\) emission. With TEPL enhancement of X\(_L\) as high as ~10\(^6\) in the triple-sharp-tips device, experimental results demonstrate the controllable X\(_L\) emission in <30 nm area with a PL energy shift up to 40 meV, resolved by tip-enhanced PL and Raman imaging with <15 nm spatial resolution. Our approach provides a systematic way to control localized quantum light in 2D semiconductors offering new strategies for active quantum nano-optical devices.
ISSN:2331-8422