Structural and Functional Analyses of Hub MicroRNAs in an Integrated Gene Regulatory Network of Arabidopsis
MicroRNAs (miRNAs) are trans-acting small regulatory RNAs that work coordinately with transcription factors (TFs) to shape the repertoires of cellular mRNA available for translation. Despite our growing knowledge of individual plant miRNAs, their global roles in gene regulatory networks remain mostl...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
12.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | MicroRNAs (miRNAs) are trans-acting small regulatory RNAs that work coordinately with transcription factors (TFs) to shape the repertoires of cellular mRNA available for translation. Despite our growing knowledge of individual plant miRNAs, their global roles in gene regulatory networks remain mostly unassessed. Based on interactions reanalyzed from public databases and curated from the literature, we reconstructed an integrated miRNA network in Arabidopsis that includes 66 core TFs, 318 miRNAs, and 1712 downstream genes. We found that miRNAs occupy distinct niches and enrich miRNA-containing feed-forward loops (FFLs), particularly those in which the miRNAs are intermediate nodes. Further analyses revealed that miRNA-containing FFLs coordinate TFs located in different hierarchical layers and that intertwined miRNA-containing FFLs are associated with party and date miRNA hubs. Using the date hub MIR858A as an example, we performed detailed molecular and genetic analyses of three interconnected miRNA-containing FFLs. These analyses revealed individual functions of the selected miRNA-containing FFLs and elucidated how the date hub miRNA fulfills multiple regulatory roles. Collectively, our findings highlighted the prevalence and importance of miRNA-containing FFLs to provide new insights into the design principles and control logic of miRNA regulatory networks governing gene expression programs in plants. Competing Interest Statement The authors have declared no competing interest. |
---|---|
DOI: | 10.1101/2020.06.10.145185 |