An Impedance-Modulated Code-Division Microwave SQUID Multiplexer
Large arrays of cryogenic detectors, including transition-edge sensors (TESs) or magnetic micro-calorimeters (MMCs), are needed for future experiments across a wide range of applications. Complexities in integration and cryogenic wiring have driven efforts to develop cryogenic readout technologies w...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
07.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Large arrays of cryogenic detectors, including transition-edge sensors (TESs) or magnetic micro-calorimeters (MMCs), are needed for future experiments across a wide range of applications. Complexities in integration and cryogenic wiring have driven efforts to develop cryogenic readout technologies with large multiplexing factors while maintaining minimal readout noise. One such example is the microwave SQUID multiplexer (\(\mu\)mux), which couples an incoming TES or magnetic calorimeter signal to a unique GHz-frequency resonance that is modulated in frequency. Here, we present a hybrid scheme combining the microwave SQUID multiplexer with code division multiplexing: the impedance-modulated code-division multiplexer (Z-CDM), which may enable an order of magnitude increase in multiplexing factor particularly for low-bandwidth signal applications. |
---|---|
ISSN: | 2331-8422 |