More Data Can Hurt for Linear Regression: Sample-wise Double Descent
In this expository note we describe a surprising phenomenon in overparameterized linear regression, where the dimension exceeds the number of samples: there is a regime where the test risk of the estimator found by gradient descent increases with additional samples. In other words, more data actuall...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
16.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this expository note we describe a surprising phenomenon in overparameterized linear regression, where the dimension exceeds the number of samples: there is a regime where the test risk of the estimator found by gradient descent increases with additional samples. In other words, more data actually hurts the estimator. This behavior is implicit in a recent line of theoretical works analyzing "double-descent" phenomenon in linear models. In this note, we isolate and understand this behavior in an extremely simple setting: linear regression with isotropic Gaussian covariates. In particular, this occurs due to an unconventional type of bias-variance tradeoff in the overparameterized regime: the bias decreases with more samples, but variance increases. |
---|---|
ISSN: | 2331-8422 |