The Teaching Circle for Large Engineering Courses: Clearing the Activation Barrier

The Teaching Circle for Large Engineering Courses: A cohort‐based model for faculty development There is ample evidence that traditional modes of faculty development, primarily comprising one‐time workshops, have not resulted in widespread adoption of research‐based effective teaching practices in t...

Full description

Saved in:
Bibliographic Details
Published inAssociation for Engineering Education - Engineering Library Division Papers p. 23.1239.1
Main Authors Finelli, Cynthia J, Joanna Mirecki Millunchick
Format Conference Proceeding
LanguageEnglish
Published Atlanta American Society for Engineering Education-ASEE 23.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Teaching Circle for Large Engineering Courses: A cohort‐based model for faculty development There is ample evidence that traditional modes of faculty development, primarily comprising one‐time workshops, have not resulted in widespread adoption of research‐based effective teaching practices in the classroom. Based on our research about factors that motivate faculty to adopt effective teaching practices, the strong commitment of our engineering administration in impacting the undergraduate classroom, and our understanding of the literature for successful faculty development, we designed and implemented the “Teaching Circle for Large Engineering Courses.” The cohort‐based nature of the program allowed engineering faculty to learn with others about effective approaches for teaching large courses and to implement a new teaching technique in their own course. The large course focus allowed us to address the challenge of motivating and engaging students in the traditionally didactic format and to impact the experience of a substantial number of undergraduate engineering students. The Teaching Circle was co‐facilitated by a senior engineering faculty member (a professor in the Materials Science and Engineering Department at a large research university) and an experienced faculty developer (director of the university’s engineering‐specific teaching center), and it included four monthly interactive sessions over the course of the term. Participants were expected to have a midterm student feedback session (a.k.a., Small Group Instructional Diagnosis) conducted in their course to evaluate the impact of their efforts. Additionally, participants completed Murray’s Teaching Behaviors Inventory at the beginning and end of the term. For their time and effort, participants were eligible for a $1,000 grant to support their teaching in large courses. Due to staffing and budget constraints, the Teaching Circle program was limited to seven faculty. All engineering faculty were invited to apply for the first offering of the Teaching Circle, and 25 applied to participate. The facilitators selected seven faculty who were not regular participants in programs offered by the teaching center and who collectively represented a range of rank, experience, and discipline. Eight faculty who applied but did not participate in the Teaching Circle served as a control group, having a midterm student feedback session and completing the behaviors of teaching inventory at the beginning and end of the term. The four, highly‐interactive sessions of the Teaching Circle addressed a variety of topics: building rapport in large classes, active learning, student motivation and screencasts, and student preconceptions and classroom response systems. They each featured readings that summarized relevant research and highlighted practical strategies for success, and there was considerable discussion amongst the participants. Over the course of the term, faculty interacted extensively with the two program facilitators, with each other, and with other senior faculty who were invited guests at meetings. Evaluation data indicates that the program was successful. For five of the six behaviors assessed by Murray’s Teaching Behaviors Inventory, there was no difference between the participants and the control group at the beginning of the term (participants in the program were significantly less enthusiastic than were faculty in the control group). At the end of the term, however, participants’ scores were greater than faculty in the control group for all six behaviors. Further, participants had greater overall gains in all six categories than did faculty in the control group, with differences in gains in enthusiasm and clarity being statistically significant (p=0.018 and p=0.094, respectively). Qualitative feedback in the form of end‐of‐project evaluations also indicated program success. For instance, one faculty member noted that: “It was a fantastic program that far exceeded my expectations! Not only did it provide me with great ideas and an opportunity to freely ask questions about how to improve my teaching, but I greatly valued the networking opportunities with other faculty of various levels of expertise facing similar challenges in engineering.” The features of this program which contributed to its success include multiple meetings of the entire cohort which were sustained over the academic term, interactive sessions with the participants and other faculty, and the partnership between a senior faculty member and an experienced faculty developer. The small monetary incentive ($1,000) was also important. The Teaching Circle has been adopted as a successful model of faculty development by faculty and administrators in our College of Engineering. We currently are running the second offering of the program (to which 20 faculty applied), with plans to expand the program in the future. Our findings suggests that the small interactive and peer learning model works as well with faculty as it does with students.