Analysis And Design Of Vehicle Suspension System Using Matlab And Simulink

NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract Analysis and Design of Vehicle Suspension System Using MATLAB and SIMULINK Alireza Mohammadzadeh, Salim Haidar Grand Valley State University Overview Although textbooks1, 2, 3, 4, 5, 6 in the area...

Full description

Saved in:
Bibliographic Details
Published inAssociation for Engineering Education - Engineering Library Division Papers p. 11.213.1
Main Authors Haidar, Salim, Mohammadzadeh, Ali
Format Conference Proceeding
LanguageEnglish
Published Atlanta American Society for Engineering Education-ASEE 18.06.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract Analysis and Design of Vehicle Suspension System Using MATLAB and SIMULINK Alireza Mohammadzadeh, Salim Haidar Grand Valley State University Overview Although textbooks1, 2, 3, 4, 5, 6 in the area of vibrations employ software tools, such as MATLAB, Mathcad, Maple, in their treatment of vibration principles and concepts; however most of their coverage of the ever important role of technology in teaching vibrations is limited to isolated usage of these tools in some end of the chapter computer problems. Second, their treatment appears to focus primarily on the presentation of the programming aspects of the issue without much analysis and design of vibration systems. In vibrations, the simplest model representing a system is a linear, lumped parameter, discrete system model, which requires considerable analytical and computational effort for systems with more than two degrees of freedom. In such circumstances, the use of software programs, such as MATLAB and Mathcad are essential in obtaining numerical results in order to understand and predict system’s physical behavior. For example, the natural frequencies and mode shapes of a four degree of freedom model of an automobile suspension system are, in general, pairs of complex conjugates for which hand calculations and extractions is a formidable task, if not impossible. Such studies can be easily done in MATLAB or a Mathcad environment. Examples like this, makes it more and more evident to the teachers of vibrations that the best approach to teaching vibration concepts and principles is to carefully integrate computational methods available in most software programs with the theory. Although the treatment of automobile suspension system is a standard application of vibration theory, the application of MATLAB and SIMULINK to it is an original frame work. As a frequent instructor of vibrations course, one of the authors regularly receives complimentary copies of textbooks on the subject of vibrations each and every year from a number of publishers. In neither the graduate level textbooks, such as the ones by, Weaver and Timoshenko7, Meirovitch8, Ginsberg9, de Silva10, Benaroya11, or the undergraduate level texts, such as the ones by Thomson, Tongue, Inman, Rao, Belachandron, Kelly have we seen or noticed a complete treatment of suspension problem. For instance, Thomson covers the free vibration model of suspension system with no damping elements involved. Inman considers damping in the model but regards only free vibrations and avoids the complex conjugate eigenvalues involved. On the other hand, Meirovitch presents a forced vibration formulation of the suspension model, however, avoids the solution part all together. None of these textbooks mentioned above, present derivation and formulation for base excitation of the suspension system as it is presented in our paper. That is a 2-degree of freedom model. Besides, in deriving
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21