Resource Allocation for Non-Orthogonal Multiple Access (NOMA) Enabled LPWA Networks
In this paper, we investigate the resource allocation for uplink non-orthogonal multiple access (NOMA) enabled low-power wide-area (LPWA) networks to support the massive connectivity of users/nodes. Here, LPWA nodes communicate with a central gateway through resource blocks like channels, transmissi...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
30.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we investigate the resource allocation for uplink non-orthogonal multiple access (NOMA) enabled low-power wide-area (LPWA) networks to support the massive connectivity of users/nodes. Here, LPWA nodes communicate with a central gateway through resource blocks like channels, transmission times, bandwidths, etc. The nodes sharing the same resource blocks suffer from intra-cluster interference and possibly inter-cluster interference, which makes current LPWA networks unable to support the massive connectivity. Using the minimum transmission rate metric to highlight the interference reduction that results from the addition of NOMA, and while assuring user throughput fairness, we decompose the minimum rate maximization optimization problem into three sub-problems. First, a low-complexity sub-optimal nodes clustering scheme is proposed assigning nodes to channels based on their normalized channel gains. Then, two types of transmission time allocation algorithms are proposed that either assure fair or unfair transmission time allocation between LPWA nodes sharing the same channel. For a given channel and transmission time allocation, we further propose an optimal power allocation scheme. Simulation evaluations demonstrate approximately 100dB improvement of the selected metric for a single network with 4000 active nodes. |
---|---|
ISSN: | 2331-8422 |