L^p-asymptotic stability analysis of a 1D wave equation with a nonlinear damping
This paper is concerned with the asymptotic stability analysis of a one dimensional wave equation with Dirichlet boundary conditions subject to a nonlinear distributed damping with an L p functional framework, p \(\in\) [2, \(\infty\)]. Some well-posedness results are provided together with exponent...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
26.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper is concerned with the asymptotic stability analysis of a one dimensional wave equation with Dirichlet boundary conditions subject to a nonlinear distributed damping with an L p functional framework, p \(\in\) [2, \(\infty\)]. Some well-posedness results are provided together with exponential decay to zero of trajectories, with an estimation of the decay rate. The well-posedness results are proved by considering an appropriate functional of the energy in the desired functional spaces introduced by Haraux in [11]. Asymptotic behavior analysis is based on an attractivity result on a trajectory of an infinite-dimensional linear time-varying system with a special structure, which relies on the introduction of a suitable Lyapunov functional. Note that some of the results of this paper apply for a large class of nonmonotone dampings. |
---|---|
Bibliography: | content type line 50 SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 |
ISSN: | 2331-8422 |