Resource-Efficient Computing in Wearable Systems
We propose two optimization techniques to minimize memory usage and computation while meeting system timing constraints for real-time classification in wearable systems. Our method derives a hierarchical classifier structure for Support Vector Machine (SVM) in order to reduce the amount of computati...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
07.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose two optimization techniques to minimize memory usage and computation while meeting system timing constraints for real-time classification in wearable systems. Our method derives a hierarchical classifier structure for Support Vector Machine (SVM) in order to reduce the amount of computations, based on the probability distribution of output classes occurrences. Also, we propose a memory optimization technique based on SVM parameters, which results in storing fewer support vectors and as a result requiring less memory. To demonstrate the efficiency of our proposed techniques, we performed an activity recognition experiment and were able to save up to 35% and 56% in memory storage when classifying 14 and 6 different activities, respectively. In addition, we demonstrated that there is a trade-off between accuracy of classification and memory savings, which can be controlled based on application requirements. |
---|---|
ISSN: | 2331-8422 |