Fast Algorithms for Surface Reconstruction from Point Cloud

We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the co...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors He, Yuchen, Huska, Martin, Sung Ha Kang, Liu, Hao
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the computational efficiency through relaxation on the time-step constraint. An approach based on Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating Direction Method of Multipliers-type algorithm, where each sub-problem is solved efficiently. We analyze the effects of the parameters on the level-set evolution and explore the connection between these two approaches. We present numerical examples to validate our algorithms in terms of their accuracy and efficiency.
AbstractList We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the computational efficiency through relaxation on the time-step constraint. An approach based on Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating Direction Method of Multipliers-type algorithm, where each sub-problem is solved efficiently. We analyze the effects of the parameters on the level-set evolution and explore the connection between these two approaches. We present numerical examples to validate our algorithms in terms of their accuracy and efficiency.
Author Liu, Hao
Huska, Martin
Sung Ha Kang
He, Yuchen
Author_xml – sequence: 1
  givenname: Yuchen
  surname: He
  fullname: He, Yuchen
– sequence: 2
  givenname: Martin
  surname: Huska
  fullname: Huska, Martin
– sequence: 3
  fullname: Sung Ha Kang
– sequence: 4
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
BookMark eNqNyk0KwjAQQOEgClbtHQZcF5pJ6w-upFhcinVfSk20pc1oJrm_LjyAq7f43kJMLVk9EREqJZNdhjgXMXOfpilutpjnKhKHsmEPx-FBrvPPkcGQgyo407Qarroly96F1ndkwTga4UKd9VAMFO4rMTPNwDr-dSnW5elWnJOXo3fQ7OuegrNfqhFzme2llJn67_oARCs46Q
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_22514911143
IEDL.DBID BENPR
IngestDate Thu Oct 10 15:40:45 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_22514911143
OpenAccessLink https://www.proquest.com/docview/2251491114?pq-origsite=%requestingapplication%
PQID 2251491114
PQPubID 2050157
ParticipantIDs proquest_journals_2251491114
PublicationCentury 2000
PublicationDate 20190702
PublicationDateYYYYMMDD 2019-07-02
PublicationDate_xml – month: 07
  year: 2019
  text: 20190702
  day: 02
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.2105532
SecondaryResourceType preprint
Snippet We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Energy conservation
Image reconstruction
Run time (computers)
Surface energy
Title Fast Algorithms for Surface Reconstruction from Point Cloud
URI https://www.proquest.com/docview/2251491114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5sguDNJz5qWdBrMNlXEzyIlsQitAQf0FvZ7G5UqE1t0qu_3UlI7UHocVnY2V3m9c3O7ABc-1GmAmMCz9BMe5wzlDmZcY8yJnOtrOw37XxGYzl8408TMWkDbmWbVrnWiY2iNoWuY-Q3yHfozKNk8rvFt1d3japfV9sWGh1wKSIF3wH3IR6nz39RFir76DOzf4q2sR7JPripWtjlAezY-SHsNkmXujyC20SVFbmfvSOd6uOrJOhAkpfVMlfakhoXbn53JXUZCEmLz3lFBrNiZY7hKolfB0NvTXHackU53ZyBnYCD8N6eAglCI3wdWqal4cqEUWC1QJSRiZyKPBJn0N220vn26QvYQxMfNQmmtAsObtteohmtsh50wuSx194YjkY_8S8i_HzY
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfTmEx9VF_QabLKPJngQKcaobSlYobew2d1UoTa1Sf-_s0tqD0LPCzvMMjPfzOw8AG7bUSZ9rX1PB5nyGKOocyJjXkCpyJU0ouPW-fQHIvlgr2M-rhNuZV1WubKJzlDrQtkc-R3KHTrzqJnsYf7j2a1R9ne1XqGxDU1GEattp3j8_JdjCUQHPWb6z8w67Ij3oTmUc7M4gC0zO4QdV3KpyiO4j2VZkcfpBKlUn98lQfeRvC8XuVSG2KhwPduV2CYQMiy-ZhXpToulPoab-GnUTbwVxbSWiTJdc0BPoIHBvTkF4oeat1VoqBKaSR1GvlEcY4yM5wHPI34GrU03nW8-vobdZNTvpb2XwdsF7CHYR67UNGhBA1kwlwioVXblXu0XJWt8TA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Algorithms+for+Surface+Reconstruction+from+Point+Cloud&rft.jtitle=arXiv.org&rft.au=He%2C+Yuchen&rft.au=Huska%2C+Martin&rft.au=Sung+Ha+Kang&rft.au=Liu%2C+Hao&rft.date=2019-07-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422