Fast Algorithms for Surface Reconstruction from Point Cloud
We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the co...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
02.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the computational efficiency through relaxation on the time-step constraint. An approach based on Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating Direction Method of Multipliers-type algorithm, where each sub-problem is solved efficiently. We analyze the effects of the parameters on the level-set evolution and explore the connection between these two approaches. We present numerical examples to validate our algorithms in terms of their accuracy and efficiency. |
---|---|
ISSN: | 2331-8422 |