A Fully Time-domain Neural Model for Subband-based Speech Synthesizer
This paper introduces a deep neural network model for subband-based speech synthesizer. The model benefits from the short bandwidth of the subband signals to reduce the complexity of the time-domain speech generator. We employed the multi-level wavelet analysis/synthesis to decompose/reconstruct the...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
02.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper introduces a deep neural network model for subband-based speech synthesizer. The model benefits from the short bandwidth of the subband signals to reduce the complexity of the time-domain speech generator. We employed the multi-level wavelet analysis/synthesis to decompose/reconstruct the signal into subbands in time domain. Inspired from the WaveNet, a convolutional neural network (CNN) model predicts subband speech signals fully in time domain. Due to the short bandwidth of the subbands, a simple network architecture is enough to train the simple patterns of the subbands accurately. In the ground truth experiments with teacher-forcing, the subband synthesizer outperforms the fullband model significantly in terms of both subjective and objective measures. In addition, by conditioning the model on the phoneme sequence using a pronunciation dictionary, we have achieved the fully time-domain neural model for subband-based text-to-speech (TTS) synthesizer, which is nearly end-to-end. The generated speech of the subband TTS shows comparable quality as the fullband one with a slighter network architecture for each subband. |
---|---|
ISSN: | 2331-8422 |