STRESS STATE STUDY FOR PARTS OF ALUMINIUM-MAGNESIUM AND ALUMINIUM WROUGHT ALLOYS AT ROTARY SPINNING

The paper deals with the problems of rotary spinning of pipe or sheet workpieces made of aluminium-magnesium and aluminium wrought alloys. The need to control depth distribution of internal stresses in the workpiece surface layer in the rotary spinning process is determined. An Al-Mg5 aluminum alloy...

Full description

Saved in:
Bibliographic Details
Published inNauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Vol. 14; no. 3
Main Authors Leonov, D B, Vasilkov, S D, Ivanov, A Y
Format Journal Article
LanguageRussian
Published Saint Petersburg St. Petersburg National Research University of Information Technologies, Mechanics and Optics 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The paper deals with the problems of rotary spinning of pipe or sheet workpieces made of aluminium-magnesium and aluminium wrought alloys. The need to control depth distribution of internal stresses in the workpiece surface layer in the rotary spinning process is determined. An Al-Mg5 aluminum alloy part is researched, which is obtained after 3 - stage rotary spinning. By the use of non-destructive resistance electric contact method, measurements and analysis of the stressed state for the workpieces after each stage of rotary spinning are made. According to the experiment planning theory, research of the influence of processing and thermal treatment modes on the levels of residual stresses σ in the workpieces material is conducted. The value of the residual stresses is assumed as an optimization parameter, and the technological modes of spinning and the modes of the thermal treatment applied between the rotary spinning stages - as factors of the process. Statistical estimation is made, which makes it possible to obtain an adequate mathematical model (estimated by the Fisher’s criterion) describing the relation between the optimization parameter and the optimization factors. Technological processing modes with the lowest level of residual stresses in the surface layer of the researched samples and the optimal depth distribution of residual stresses in the workpiece surface layer are obtained. Developed method is applicable in all operating conditions for parts manufacturing of different geometry and different materials.
ISSN:2226-1494
2500-0373