Binary Stochastic Representations for Large Multi-class Classification

Classification with a large number of classes is a key problem in machine learning and corresponds to many real-world applications like tagging of images or textual documents in social networks. If one-vs-all methods usually reach top performance in this context, these approaches suffer from a high...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Thomas, Gerald, Léon, Aurélia, Baskiotis, Nicolas, Denoyer, Ludovic
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 24.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Classification with a large number of classes is a key problem in machine learning and corresponds to many real-world applications like tagging of images or textual documents in social networks. If one-vs-all methods usually reach top performance in this context, these approaches suffer from a high inference complexity, linear w.r.t the number of categories. Different models based on the notion of binary codes have been proposed to overcome this limitation, achieving in a sublinear inference complexity. But they a priori need to decide which binary code to associate to which category before learning using more or less complex heuristics. We propose a new end-to-end model which aims at simultaneously learning to associate binary codes with categories, but also learning to map inputs to binary codes. This approach called Deep Stochastic Neural Codes (DSNC) keeps the sublinear inference complexity but do not need any a priori tuning. Experimental results on different datasets show the effectiveness of the approach w.r.t baseline methods.
ISSN:2331-8422