Minimum Error Entropy Kalman Filter

To date most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criterio...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Chen, Badong, Dang, Lujuan, Gu, Yuantao, Zheng, Nanning, Prıncipe, Jose C
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 17.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To date most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criterion (MCC) has recently been used to replace the MMSE criterion in developing several robust Kalman-type filters. To deal with more complicated non-Gaussian noises such as noises from multimodal distributions, in the present paper we develop a new Kalman-type filter, called minimum error entropy Kalman filter (MEE-KF), by using the minimum error entropy (MEE) criterion instead of the MMSE or MCC. Similar to the MCC based KFs, the proposed filter is also an online algorithm with recursive process, in which the propagation equations are used to give prior estimates of the state and covariance matrix, and a fixed-point algorithm is used to update the posterior estimates. In addition, the minimum error entropy extended Kalman filter (MEE-EKF) is also developed for performance improvement in the nonlinear situations. The high accuracy and strong robustness of MEE-KF and MEE-EKF are confirmed by experimental results.
ISSN:2331-8422