The effect of Gi-protein inactivation on basal, and [beta]1- and [beta]2AR-stimulated contraction of myocytes from transgenic mice overexpressing the [beta]2-adrenoceptor

The atria and ventricles of transgenic mice (TGbeta(2)) with cardiac overexpression of the human beta(2)-adrenoceptor (beta(2)AR) were initially reported to show maximum contractility in the absence of beta-AR stimulation. However, we have previously observed a different phenotype in these mice, wit...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 131; no. 3; p. 594
Main Authors Gong, Haibin, Adamson, Dawn L, Ranu, Hardeep K, Koch, Walter J, Heubach, Jürgen F, Ravens, Ursula, Zolk, Oliver, Harding, Sian E
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.10.2000
Online AccessGet full text

Cover

Loading…
More Information
Summary:The atria and ventricles of transgenic mice (TGbeta(2)) with cardiac overexpression of the human beta(2)-adrenoceptor (beta(2)AR) were initially reported to show maximum contractility in the absence of beta-AR stimulation. However, we have previously observed a different phenotype in these mice, with myocytes showing normal contractility but reduced betaAR responses. We have investigated the roles of cyclic AMP and Gi in basal and betaAR function in these myocytes. ICI 118,551 at inverse agonist concentrations decreased contraction by 32%. However, the cyclic AMP antagonist Rp-cAMPS had no effect on contraction in TGbeta(2) myocytes, indicating that there was no tonic influence of raised cyclic AMP. These findings cannot be explained by the proposed model for inverse agonism, where the activated receptor (R*) raises cyclic AMP levels and so increases contraction in the absence of agonist. After pertussis toxin (PTX) pretreatment to produce inactivation of Gi, the basal contraction in 1 mM Ca(2+) was increased in TGbeta(2) mice (7.82+/-0.47%, n=23) compared to LM mice (3.60+/-0.59%, n=11) (P<0.001). The contraction amplitude of myocytes to the maximal concentration of isoprenaline was also increased significantly by PTX in TGbeta(2) mice (9.40+/-1.22%, n=8) and was no longer reduced compared to LM mice (8.93+/-1.50%, n=11). Both beta(1)- and beta(2)AR subtypes were affected both by the original desensitization and by the resensitization with PTX. PTX treatment has therefore restored the original phenotype, with high basal contractility and little further effect of isoprenaline. We suggest that both beta-AR desensitization and lack of increased basal contraction in ventricular myocytes from our colony of TGbeta(2) mice were due to increased activity of PTX-sensitive G-proteins.
ISSN:0007-1188
1476-5381
DOI:10.1038/sj.bjp.0703591