A single microRNA system controls complex movement in morphologically distinct forms of Drosophila
Movement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to the survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically-distinct developmental stages of an...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
14.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Movement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to the survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically-distinct developmental stages of an organism, but it is currently unclear whether these movements have a common or diverse molecular basis. Here we explore this problem in Drosophila focusing on the roles played by the microRNA (miRNA) locus miR-iab4/8 which was previously shown to be essential for the fruit fly larva to correct its orientation if turned upside down (self-righting) (Picao-Osorio et al., 2015). Our study shows that miR-iab4 is required for normal self-righting across all three Drosophila larval stages. Unexpectedly, we also discover that this miRNA is essential for normal self-righting behaviour in the Drosophila adult, an organism with radically different morphological and neural constitution. Through the combination of gene-expression, optical imaging and quantitative behavioural approaches we provide evidence that miR-iab4 exerts its effects on adult self-righting behaviour through repression of the Hox gene Ultrabithorax (Ubx) (Morgan, 1923; Sanchez-Herrero et al., 1985) in a specific set of motor neurons that innervate the adult Drosophila leg. Our results show that this miRNA-Hox module affects the function, rather than the morphology of motor neurons and indicate that post-developmental changes in Hox gene expression can modulate behavioural outputs in the adult. Altogether our work reveals that a common miRNA-Hox genetic module can control complex movement in morphologically-distinct organisms and describes a novel post-developmental role of the Hox genes in adult neural function. |
---|---|
DOI: | 10.1101/511881 |