Conjugational recombination in Escherichia coli: Genetic analysis of recombinant formation in Hfr times Fminus crosses

The formation of recombinants during conjugation between Hfr and F- strains of Escherichia coli was investigated using unselected markers to monitor integration of Hfr DNA into the circular recipient chromosome. In crosses selecting a marker located approximately 500 kb from the Hfr origin, 60-70% o...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 139; no. 3; p. 1123
Main Authors Lloyd, Robert G, Buckman, Carol
Format Journal Article
LanguageEnglish
Published Bethesda Genetics Society of America 01.03.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The formation of recombinants during conjugation between Hfr and F- strains of Escherichia coli was investigated using unselected markers to monitor integration of Hfr DNA into the circular recipient chromosome. In crosses selecting a marker located approximately 500 kb from the Hfr origin, 60-70% of the recombinants appeared to inherit the Hfr DNA in a single segment, with the proximal exchange located > 300 kb from the selected marker. The proportion of recombinants showing multiple exchanges increased in matings selecting more distal markers located 700-2200 kb from the origin, but they were always in the minority. This effect was associated with decreased linkage of unselected proximal markers. Mutation of recB, or recD plus recJ, in the recipient reduced the efficiency of recombination and shifted the location of the proximal exchange(s) closer to the selected marker. Mutation of recF, recO or recQ produced recombinants in which this exchange tended to be closer to the origin, though the effect observed was rather small. Up to 25% of recombinant colonies in rec+ crosses showed segregation of both donor and recipient alleles at a proximal unselected locus. Their frequency varied with the distance between the selected and unselected markers and was also related directly to the efficiency of recombination. Mutation of recD increased their number by twofold in certain crosses to a value of 19%, a feature associated with an increase in the survival of linear DNA in the absence of RecBCD exonuclease. Mutation of recN reduced sectored recombinants in these crosses to approximately 1% in all the strains examined, including recD. A model for conjugational recombination is proposed in which recombinant chromosomes are formed initially by two exchanges that integrate a single piece of duplex Hfr DNA into the recipient chromosome. Additional pairs of exchanges involving the excised recipient DNA, RecBCD enzyme and RecN protein, can subsequently modify the initial product to generate the spectrum of recombinants normally observed.
ISSN:0016-6731
1943-2631