An Operationally Based Vision Assessment Simulator for Domes

The Operational Based Vision Assessment (OBVA) simulator was designed and built by NASA and the United States Air Force (USAF) to provide the Air Force School of Aerospace Medicine (USAFSAM) with a scientific testing laboratory to study human vision and testing standards in an operationally relevant...

Full description

Saved in:
Bibliographic Details
Published inNASA Center for AeroSpace Information (CASI). Conference Proceedings
Main Authors Archdeacon, John, Gaska, James, Timoner, Samson
Format Conference Proceeding
LanguageEnglish
Published Hampton NASA/Langley Research Center 04.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Operational Based Vision Assessment (OBVA) simulator was designed and built by NASA and the United States Air Force (USAF) to provide the Air Force School of Aerospace Medicine (USAFSAM) with a scientific testing laboratory to study human vision and testing standards in an operationally relevant environment. This paper describes the general design objectives and implementation characteristics of the simulator visual system being created to meet these requirements. A key design objective for the OBVA research simulator is to develop a real-time computer image generator (IG) and display subsystem that can display and update at 120 frame s per second (design target), or at a minimum, 60 frames per second, with minimal transport delay using commercial off-the-shelf (COTS) technology. There are three key parts of the OBVA simulator that are described in this paper: i) the real-time computer image generator, ii) the various COTS technology used to construct the simulator, and iii) the spherical dome display and real-time distortion correction subsystem. We describe the various issues, possible COTS solutions, and remaining problem areas identified by NASA and the USAF while designing and building the simulator for future vision research. We also describe the critically important relationship of the physical display components including distortion correction for the dome consistent with an objective of minimizing latency in the system. The performance of the automatic calibration system used in the dome is also described. Various recommendations for possible future implementations shall also be discussed.