Design of Two RadWorks Storm Shelters for Solar Particle Event Shielding
In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two ty...
Saved in:
Published in | NASA Center for AeroSpace Information (CASI). Conference Proceedings |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
Hampton
NASA/Langley Research Center
04.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays (GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open issue, reducing astronaut exposure to SPEs is achievable through material shielding because they are made up primarily of medium-energy protons. In order to ensure astronaut safety for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. However, the increasingly demanding spacecraft propulsive performance for these ambitious missions requires minimal mass and volume radiation shielding solutions which leverage available multi-functional habitat structures and logistics as much as possible. This paper describes the efforts of NASA's RadWorks Advanced Exploration Systems (AES) Project to design two minimal mass SPE radiation shelter concepts leveraging available resources: one based upon reconfiguring habitat interiors to create a centralized protection area and one based upon augmenting individual crew quarters with waterwalls and logistics. Discussion items include the design features of the concepts, a radiation analysis of their implementations, an assessment of the parasitic mass of each concept, and the result of a human in the loop evaluation performed to drive out design and operational issues. |
---|