Zn2+-induced IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells

Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zinc. In this study, we examined t...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Lung cellular and molecular physiology Vol. 34; no. 5; p. L1028
Main Authors Yu-Mee, Kim, Reed, William, Wu, Weidong, Bromberg, Philip A
Format Journal Article
LanguageEnglish
Published Bethesda American Physiological Society 01.05.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zinc. In this study, we examined the cellular mechanisms responsible for Zn2+-induced IL-8 expression. Zn2+ stimulation resulted in pronounced increases in both IL-8 mRNA and protein expression in the human airway epithelial cell line (BEAS-2B). IL-8 promoter activity was significantly increased by Zn2+ exposure in BEAS-2B cells, indicating that Zn2+-induced IL-8 expression is transcriptionally mediated. Mutation of the activating protein (AP)-1 response element in an IL-8 promoter-enhanced green fluorescent protein construct reduced Zn2+-induced IL-8 promoter activity. Moreover, Zn2+ exposure of BEAS-2B cells induced the phosphorylation of the AP-1 proteins c-Fos and c-Jun. We observed that Zn2+ exposure induced the phosphorylation of ERK, JNK, and p38 MAPKs, whereas inhibition of ERK or JNK activity blocked IL-8 mRNA and protein expression in BEAS-2B cells treated with Zn2+. In addition, we investigated the role of protein tyrosine phosphatases in the activation of signaling by Zn2+. Zn2+ treatment inhibited ERK- and JNK-directed phosphatase activities in BEAS-2B cells. These results suggested that Zn2+-induced inhibition of phosphatase activity is an initiating event in MAPK and AP-1 activation that leads to enhanced IL-8 expression by human airway epithelial cells. [PUBLICATION ABSTRACT]
ISSN:1040-0605
1522-1504