End-to-End Argument Mining for Discussion Threads Based on Parallel Constrained Pointer Architecture
Argument Mining (AM) is a relatively recent discipline, which concentrates on extracting claims or premises from discourses, and inferring their structures. However, many existing works do not consider micro-level AM studies on discussion threads sufficiently. In this paper, we tackle AM for discuss...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
03.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Argument Mining (AM) is a relatively recent discipline, which concentrates on extracting claims or premises from discourses, and inferring their structures. However, many existing works do not consider micro-level AM studies on discussion threads sufficiently. In this paper, we tackle AM for discussion threads. Our main contributions are follows: (1) A novel combination scheme focusing on micro-level inner- and inter- post schemes for a discussion thread. (2) Annotation of large-scale civic discussion threads with the scheme. (3) Parallel constrained pointer architecture (PCPA), a novel end-to-end technique to discriminate sentence types, inner-post relations, and inter-post interactions simultaneously. The experimental results demonstrate that our proposed model shows better accuracy in terms of relations extraction, in comparison to existing state-of-the-art models. |
---|---|
ISSN: | 2331-8422 |