Semantic Matching Against a Corpus: New Applications and Methods
We consider the case of a domain expert who wishes to explore the extent to which a particular idea is expressed in a text collection. We propose the task of semantically matching the idea, expressed as a natural language proposition, against a corpus. We create two preliminary tasks derived from ex...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
28.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
Cover
Loading…
Summary: | We consider the case of a domain expert who wishes to explore the extent to which a particular idea is expressed in a text collection. We propose the task of semantically matching the idea, expressed as a natural language proposition, against a corpus. We create two preliminary tasks derived from existing datasets, and then introduce a more realistic one on disaster recovery designed for emergency managers, whom we engaged in a user study. On the latter, we find that a new model built from natural language entailment data produces higher-quality matches than simple word-vector averaging, both on expert-crafted queries and on ones produced by the subjects themselves. This work provides a proof-of-concept for such applications of semantic matching and illustrates key challenges. |
---|---|
Bibliography: | content type line 50 SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 |
ISSN: | 2331-8422 |