Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface
We prove formulas (found by Witten in 1992 using physical methods) for intersection pairings in the cohomology of the moduli space M(n,d) of stable holomorphic vector bundles of rank n and degree d (assumed coprime) on a Riemann surface of genus g greater than or equal to 2. We also use these formul...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
09.12.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We prove formulas (found by Witten in 1992 using physical methods) for intersection pairings in the cohomology of the moduli space M(n,d) of stable holomorphic vector bundles of rank n and degree d (assumed coprime) on a Riemann surface of genus g greater than or equal to 2. We also use these formulas for intersection numbers to obtain a proof of the Verlinde formula for the dimension of the space of holomorphic sections of a line bundle over M(n,d). |
---|---|
ISSN: | 2331-8422 |