Diagnosis and Location of Pinhole Defects in Tunnel Junctions using only Electrical Measurements
In the development of the first generation of sensors and memory chips based on spin-dependent tunneling through a thin trilayer, it has become clear that pinhole defects can have a deleterious effect on magnetoresistance. However, current diagnostic protocols based on Andreev reflection and the tem...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
06.06.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the development of the first generation of sensors and memory chips based on spin-dependent tunneling through a thin trilayer, it has become clear that pinhole defects can have a deleterious effect on magnetoresistance. However, current diagnostic protocols based on Andreev reflection and the temperature dependence of junction resistance may not be suitable for production quality control. We show that the current density in a tunnel junction in the cross-strip geometry becomes very inhomogeneous in the presence of a single pinhole, yielding a four-terminal resistance that depends on the location of the pinhole in the junction. Taking advantage of this position dependence, we propose a simple protocol of four four-terminal measurements. Solving an inverse problem, we can diagnose the presence of a pinhole and estimate its position and resistance. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0306153 |