Structural and dynamical properties of nanoconfined supercooled water
Bulk water presents a large number of crystalline and amorphous ices. Hydrophobic nanoconfinement is known to affect the tendency of water to form ice and to reduce the melting temperature. However, a systematic study of the ice phases in nanoconfinement is hampered by the computational cost of simu...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
14.02.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bulk water presents a large number of crystalline and amorphous ices. Hydrophobic nanoconfinement is known to affect the tendency of water to form ice and to reduce the melting temperature. However, a systematic study of the ice phases in nanoconfinement is hampered by the computational cost of simulations at very low temperatures. Here we develop a coarse-grained model for a water monolayer in hydrophobic nanoconfinement and study the formation of ice by Mote Carlo simulations. We find two ice phases: low-density-crystal ice at low pressure and high-density hexatic ice at high pressure, an intermediate phase between liquid and high-density-crystal ice. |
---|---|
ISSN: | 2331-8422 |