Toward the Universal Rigidity of General Frameworks

Let (G,P) be a bar framework of n vertices in general position in R^d, d <= n-1, where G is a (d+1)-lateration graph. In this paper, we present a constructive proof that (G,P) admits a positive semi-definite stress matrix with rank n-d-1. We also prove a similar result for a sensor network where...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Alfakih, Abdo Y, Taheri, Nicole, Ye, Yinyu
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 06.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let (G,P) be a bar framework of n vertices in general position in R^d, d <= n-1, where G is a (d+1)-lateration graph. In this paper, we present a constructive proof that (G,P) admits a positive semi-definite stress matrix with rank n-d-1. We also prove a similar result for a sensor network where the graph consists of m(>= d+1) anchors.
ISSN:2331-8422