Expected velocity anomaly for the Earth flyby of Juno spacecraft on October 9, 2013

The so-called flyby anomaly is a yet unexplainable velocity jump measured at several Earth flybys of spacecraft. Known physical effects could be excluded as source of this anomaly. In order to model a possible new physical effect, empirical equations were proposed by Busack (2007) and Anderson et al...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Busack, Hans-Jürgen
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 25.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The so-called flyby anomaly is a yet unexplainable velocity jump measured at several Earth flybys of spacecraft. Known physical effects could be excluded as source of this anomaly. In order to model a possible new physical effect, empirical equations were proposed by Busack (2007) and Anderson et al. (2007), which gave quite good description of all measured anomalies. Some theories were suggested deriving the Anderson formula or a similar one. The recent two Earth flybys of the spacecraft Rosetta showed no measurable anomaly, although the Anderson formula predicted distinct effects for both flybys. The Busack formula predicted the null results, so the notion of a possibly correct formula or of an error of the older measuring software was supported. The forthcoming Earth flyby of Juno gives a good opportunity to decide this question or give rise to enhanced theory, because the orbit parameters are very similar to earlier flybys with notable effects. In this article, the flyby anomaly according to the Busack equation will be predicted to be about -7mm/s in contrast to the value after the Anderson equation and similar ones with distinct positive value of the order of +6mm/s.
ISSN:2331-8422