A Design Path for Hierarchical Self-Assembly of Patchy Colloids
Patchy colloids are promising candidates for building blocks in directed self-assembly. To be successful the surface patterns need to both be simple enough to be synthesized, while feature-rich enough to cause the colloids to self-assemble into desired structures. Achieving this is a challenge for t...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
12.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Patchy colloids are promising candidates for building blocks in directed self-assembly. To be successful the surface patterns need to both be simple enough to be synthesized, while feature-rich enough to cause the colloids to self-assemble into desired structures. Achieving this is a challenge for traditional synthesis methods. Recently it has been suggested that the surface pattern themselves can be made to self-assemble. In this paper we show that a wide range of functional structures can be made to self-assemble using this approach. More generally we present a design path for hierarchical targeted self-assembly of patchy colloids. At the level of the surface structure, we use a predictive method utilizing universality of patterns of stripes and spots, coupled with stoichiometric constraints, to cause highly specific and functional patterns to self-assemble on spherical surfaces. We use a minimalistic model of an alkanethiol on gold as a model system and demonstrate that, even with limited control over the interaction between surface constituents, we can obtain patterns that causes the colloids themselves to self-assemble into various complex geometric structures. We demonstrate how variations of the same design path cause in-silico self-assembly of strings, membranes, cubic and spherical aggregates, as well as various crystalline patterns. |
---|---|
ISSN: | 2331-8422 |