Equipartitions and a Distribution for Numbers: A Statistical Model for Benford's Law
A statistical model for the fragmentation of a conserved quantity is analyzed, using the principle of maximum entropy and the theory of partitions. Upper and lower bounds for the restricted partitioning problem are derived and applied to the distribution of fragments. The resulting power law directl...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
28.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A statistical model for the fragmentation of a conserved quantity is analyzed, using the principle of maximum entropy and the theory of partitions. Upper and lower bounds for the restricted partitioning problem are derived and applied to the distribution of fragments. The resulting power law directly leads to Benford's law for the first digits of the parts. |
---|---|
ISSN: | 2331-8422 |