Crystallization Inhibitors: Explaining Experimental Data through Mathematical Models
In this paper we propose a new mathematical model describing the effect of phosphocitrate (PC) on sodium sulphate crystallization inside bricks. This model describes salt and water transport, and crystal formation in a one dimensional symmetry. This is the first study that takes into account mathema...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
21.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we propose a new mathematical model describing the effect of phosphocitrate (PC) on sodium sulphate crystallization inside bricks. This model describes salt and water transport, and crystal formation in a one dimensional symmetry. This is the first study that takes into account mathematically the effects of inhibitors inside a porous stone. To this aim, we introduce two model parameters: the crystallization rate, which depends on the nucleation rate, and the specific volume of precipitated salt. These two parameters are determined by numerical calibration of our system model for both the treated and non treated case. |
---|---|
ISSN: | 2331-8422 |