Gradual Training Method for Denoising Auto Encoders
Stacked denoising auto encoders (DAEs) are well known to learn useful deep representations, which can be used to improve supervised training by initializing a deep network. We investigate a training scheme of a deep DAE, where DAE layers are gradually added and keep adapting as additional layers are...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
11.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Stacked denoising auto encoders (DAEs) are well known to learn useful deep representations, which can be used to improve supervised training by initializing a deep network. We investigate a training scheme of a deep DAE, where DAE layers are gradually added and keep adapting as additional layers are added. We show that in the regime of mid-sized datasets, this gradual training provides a small but consistent improvement over stacked training in both reconstruction quality and classification error over stacked training on MNIST and CIFAR datasets. |
---|---|
ISSN: | 2331-8422 |