On a \(L^\infty\) functional derivative estimate relating to the Cauchy problem for scalar semi-linear parabolic partial differential equations with general continuous nonlinearity

In this paper, we consider a \(L^\infty\) functional derivative estimate for the first spatial derivative of bounded classical solutions \(u:\mathbb{R}\times [0,T]\to\mathbb{R}\) to the Cauchy problem for scalar semi-linear parabolic partial differential equations with a continuous nonlinearity \(f:...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Meyer, John Christopher, Needham, David John
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 24.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we consider a \(L^\infty\) functional derivative estimate for the first spatial derivative of bounded classical solutions \(u:\mathbb{R}\times [0,T]\to\mathbb{R}\) to the Cauchy problem for scalar semi-linear parabolic partial differential equations with a continuous nonlinearity \(f:\mathbb{R}\to\mathbb{R}\) and initial data \(u_0:\mathbb{R}\to\mathbb{R}\), of the form, \[ \sup_{x\in\mathbb{R}}|u_x (x , t)| \leq \mathcal{F}_t (f,u_0,u) \ \ \ \forall t\in [0,T] . \] Here \(\mathcal{F}_t:\mathcal{A}_t\to\mathbb{R}\) is a functional as defined in \textsection 1. We establish that the functional derivative estimate is non-trivially sharp, by constructing a sequence \((f_n,0,u^{(n)})\), where for each \(n\in\mathbb{N}\), \(u^{(n)}:\mathbb{R}\times [0,T]\to\mathbb{R}\) is a solution to the Cauchy problem with zero initial data and nonlinearity \(f_n:\mathbb{R}\to\mathbb{R}\), and for which \(\sup_{x\in\mathbb{R}} |u_x^{(n)}(x,T)| \geq \alpha >0\), with \[ \lim_{n\to\infty} \left( \inf_{t\in [0,T]} \left( \sup_{x\in\mathbb{R}}|u_x^{(n)}(\cdot , t)| - \mathcal{F}_t (f_n , 0 , u^{(n)}) \right) \right) = 0 . \]
ISSN:2331-8422
DOI:10.48550/arxiv.1607.07102