Decidability Results for Multi-objective Stochastic Games

We study stochastic two-player turn-based games in which the objective of one player is to ensure several infinite-horizon total reward objectives, while the other player attempts to spoil at least one of the objectives. The games have previously been shown not to be determined, and an approximation...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Brenguier, Romain, ejt, Vojtěch
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 12.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study stochastic two-player turn-based games in which the objective of one player is to ensure several infinite-horizon total reward objectives, while the other player attempts to spoil at least one of the objectives. The games have previously been shown not to be determined, and an approximation algorithm for computing a Pareto curve has been given. The major drawback of the existing algorithm is that it needs to compute Pareto curves for finite horizon objectives (for increasing length of the horizon), and the size of these Pareto curves can grow unboundedly, even when the infinite-horizon Pareto curve is small. By adapting existing results, we first give an algorithm that computes the Pareto curve for determined games. Then, as the main result of the paper, we show that for the natural class of stopping games and when there are two reward objectives, the problem of deciding whether a player can ensure satisfaction of the objectives with given thresholds is decidable. The result relies on intricate and novel proof which shows that the Pareto curves contain only finitely many points. As a consequence, we get that the two-objective discounted-reward problem for unrestricted class of stochastic games is decidable.
ISSN:2331-8422