Influence of Heat Treatment on the Corrosion Behavior of Purified Magnesium and AZ31 Alloy
Magnesium and its alloys are ideal for biodegradable implants due to their biocompatibility and their low-stress shielding. However, they can corrode too rapidly in the biological environment. The objective of this research was to develop heat treatments to slow the corrosion of high purified magnes...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
27.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Magnesium and its alloys are ideal for biodegradable implants due to their biocompatibility and their low-stress shielding. However, they can corrode too rapidly in the biological environment. The objective of this research was to develop heat treatments to slow the corrosion of high purified magnesium and AZ31 alloy in simulated body fluid at 37{\deg}C. Heat treatments were performed at different temperatures and times. Hydrogen evolution, weight loss, PDP, and EIS methods were used to measure the corrosion rates. Results show that heat treating can increase the corrosion resistance of HP-Mg by 2x and AZ31 by 10x. |
---|---|
ISSN: | 2331-8422 |