Intermittent Preventive Treatment (IPT): Its role in averting disease-induced mortalities in children and in promoting the spread of antimalarial drug resistance

We develop a variable population age-structured ODE model to investigate the role of Intermittent Preventive Treatment (IPT) in averting malaria-induced mortalities in children, as well as its related cost in promoting the spread of anti-malarial drug resistance. IPT, a malaria control strategy in w...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Manore, Carrie A, Teboh-Ewungkem, Miranda I, Prosper, Olivia, Peace, Angela L, Gurski, Katharine, Feng, Zhilan
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 18.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We develop a variable population age-structured ODE model to investigate the role of Intermittent Preventive Treatment (IPT) in averting malaria-induced mortalities in children, as well as its related cost in promoting the spread of anti-malarial drug resistance. IPT, a malaria control strategy in which a full curative dose of an antimalarial medication is administered to vulnerable asymptomatic individuals at specified intervals, has been shown to have a positive impact on reducing malaria transmission and deaths in children and pregnant women. However, it can also promote drug resistance spread. Our mathematical model is used to explore IPT effects on drug resistance in holoendemic malaria regions while quantifying the benefits in deaths averted. Our model includes both drug-sensitive and drug-resistant strains of the parasite as well as interactions between human hosts and mosquitoes. The basic reproduction numbers for both strains as well as the invasion reproduction numbers are derived and used to examine the role of IPT on drug resistance. Numerical simulations show the individual and combined effects of IPT and treatment of symptomatic infections on the prevalence levels of both parasite strains and on the number of lives saved. The results suggest that while IPT can indeed save lives, particularly in the high transmission region, certain combinations of drugs used for IPT and drugs used to treat symptomatic infection may result in more deaths when resistant parasite strains are circulating. Moreover, the half-lives of the treatment and IPT drugs used play an important role in the extent to which IPT may influence the rate of spread of the resistant strain. A sensitivity analysis indicates the model outcomes are most sensitive to the reduction factor of transmission for the resistant strain, rate of immunity loss, and the clearance rate of sensitive infections.
ISSN:2331-8422