Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part II: Complexity and Numerical Results
We present complexity and numerical results for a new asynchronous parallel algorithmic method for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed method hinges on successive convex approxim...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
19.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present complexity and numerical results for a new asynchronous parallel algorithmic method for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed method hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of modern computational architectures and asynchronous implementations in a more faithful way than state-of-the-art models. In the companion paper we provided a detailed description on the probabilistic model and gave convergence results for a diminishing stepsize version of our method. Here, we provide theoretical complexity results for a fixed stepsize version of the method and report extensive numerical comparisons on both convex and nonconvex problems demonstrating the efficiency of our approach. |
---|---|
Bibliography: | content type line 50 SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 |
ISSN: | 2331-8422 |