Decoding with Finite-State Transducers on GPUs
Weighted finite automata and transducers (including hidden Markov models and conditional random fields) are widely used in natural language processing (NLP) to perform tasks such as morphological analysis, part-of-speech tagging, chunking, named entity recognition, speech recognition, and others. Pa...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
17.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Weighted finite automata and transducers (including hidden Markov models and conditional random fields) are widely used in natural language processing (NLP) to perform tasks such as morphological analysis, part-of-speech tagging, chunking, named entity recognition, speech recognition, and others. Parallelizing finite state algorithms on graphics processing units (GPUs) would benefit many areas of NLP. Although researchers have implemented GPU versions of basic graph algorithms, limited previous work, to our knowledge, has been done on GPU algorithms for weighted finite automata. We introduce a GPU implementation of the Viterbi and forward-backward algorithm, achieving decoding speedups of up to 5.2x over our serial implementation running on different computer architectures and 6093x over OpenFST. |
---|---|
ISSN: | 2331-8422 |