Induced L^sub 2^ Norm Improvement by Interpolating Controllers for Discrete-time LPV Systems
The paper shows an interpolation-based control solution as a possible technique to formulate the constrained H^sub ∞^ control problem for discrete-time linear parameter varying (LPV) systems. The control policy is constructed by interpolating among a priori designed, unconstrained, constant, state f...
Saved in:
Published in | European journal of control Vol. 15; no. 5; p. 545 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Elsevier Limited
01.09.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The paper shows an interpolation-based control solution as a possible technique to formulate the constrained H^sub ∞^ control problem for discrete-time linear parameter varying (LPV) systems. The control policy is constructed by interpolating among a priori designed, unconstrained, constant, state feedback controllers. Invariant set theory is used to introduce the measure of the domain of applicability. It is shown that the 'trade-off' between the performance and the size of the domain of applicability can be significantly reduced by controller interpolation. Hence, the interpolation-based controller becomes applicable over a much larger region than any other single state feedback. The proposed method gives stabilizing solution not only under hard constraints, but also allows the online modification of the induced L^sub 2^ norm from the generalized disturbance input to the predefined performance output. Moreover, the suggested method can be applied in real-time environment. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0947-3580 1435-5671 |