Micromachined force scale for optical power measurement by radiation pressure sensing

We introduce a micromachined force scale for laser power measurement by means of radiation pressure sensing. With this technique, the measured laser light is not absorbed and can be utilized while being measured. We employ silicon micromachining technology to construct a miniature force scale, openi...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ryger, Ivan, Artusio-Glimpse, Alexandra B, Williams, Paul, Tomlin, Nathan, Stephens, Michelle, Rogers, Kyle, Spidell, Matthew, Lehman, John
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 27.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce a micromachined force scale for laser power measurement by means of radiation pressure sensing. With this technique, the measured laser light is not absorbed and can be utilized while being measured. We employ silicon micromachining technology to construct a miniature force scale, opening the potential to its use for fast in-line laser process monitoring. Here we describe the mechanical sensing principle and conversion to an electrical signal. We further outline an electrostatic force substitution process for nulling of the radiation pressure force on the sensor mirror. Finally, we look at the performance of a proof-of-concept device in open-loop operation (without the nulling electrostatic force) subjected to a modulated laser at 250 W and find its response time is less than 20 ms with noise floor dominated by electronics at 2.5 W/root(Hz).
ISSN:2331-8422